Arbitrage and Duality in Nondominated Discrete-Time Models

نویسندگان

  • Bruno Bouchard
  • Marcel Nutz
چکیده

We consider a nondominated model of a discrete-time financial market where stocks are traded dynamically and options are available for static hedging. In a general measure-theoretic setting, we show that absence of arbitrage in a quasi-sure sense is equivalent to the existence of a suitable family of martingale measures. In the arbitrage-free case, we show that optimal superhedging strategies exist for general contingent claims, and that the minimal superhedging price is given by the supremum over the martingale measures. Moreover, we obtain a nondominated version of the Optional Decomposition Theorem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality

‎In this paper‎, ‎we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints‎. ‎We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions‎. ‎We also fo...

متن کامل

Martingale Pricing Measures in Incomplete Markets via Stochastic Programming Duality in the Dual of L

We propose a new framework for analyzing pricing theory for incomplete markets and contingent claims, using conjugate duality and optimization theory. Various statements in the literature of the fundamental theorem of asset pricing give conditions under which an essentially arbitrage-free market is equivalent to the existence of an equivalent martingale measure, and a formula for the fair price...

متن کامل

Notes on free lunch in the limit and pricing by conjugate duality theory

King and Korf [9] introduced, in the framework of a discrete-time dynamic market model on a general probability space, a new concept of arbitrage called free lunch in the limit which is slightly weaker than the common free lunch. The definition was motivated by the attempt at proposing the pricing theory based on the theory of conjugate duality in optimization. We show that this concept of arbi...

متن کامل

Duality and martingales: a stochastic programming perspective on contingent claims

The hedging of contingent claims in the discrete time, discrete state case is analyzed from the perspective of modeling the hedging problem as a stochastic program. Application of conjugate duality leads to the arbitrage pricing theorems of financial mathematics, namely the equivalence of absence of arbitrage and the existence of a probability measure that makes the price process into a marting...

متن کامل

Discrete-Time Constrained Portfolio Optimization: Strong Duality Analysis

We study in this paper the strong duality for discrete-time convex constrained portfolio selection problems when adopting a risk neutral computational approach. In contrast to the continuous-time models, there is no known result of the existence conditions in discrete-time models to ensure the strong duality. Investigating the relationship among the primal problem, the Lagrangian dual and the P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013